same surface, and Figure 3 is a contour diagram showing lines of constant P.

The only azeotrope is for the water/ethanol binary system at $x_{+} = 0.0641$ and $P^{az} = 29.537$ kPa.

Giossary

 A_{ij}, A_{ii} parameters in eq 1 second virial coefficient B" Č₀, C₁, parameters in eq 2 C₂ GĔ excess Gibbs function, liquid phase g P G^E/RT total pressure P, sat vapor pressure of pure i R universal gas constant Τ absolute temperature V_i^{L} molar volume of pure liquid / mole fraction, liquid phase X

Greek Letters

 $\lambda_{y}, \lambda_{\mu}, \quad \text{parameters in eq 1} \ \eta_{y}, \ \eta_{\mu} \ \delta \qquad \text{denotes the difference, calls}$

denotes the difference, calculated - experimental

Registry No. Ethylene glycol, 107-21-1; ethanol, 64-17-5.

Literature Cited

- (1) Glbbs, R. E.; Van Ness, H. C. Ind. Eng. Chem. Fundam. 1972, 11,
- 410.
 (2) DiElsi, D. P.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. J. Chem. Eng. Data 1978, 23, 242.
- (3) Abbott, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62.
 (4) Abbott, M. M.; Floess, J. K.; Walsh, G. E.; Van Ness, H. C. AIChE J. 1975, 21, 72.
- (5) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209.
- (6) Pemberton, R. C.; Mash, C. J. J. Chem. Thermodyn. 1978, 10, 867.

Received for review January 17, 1983. Accepted March 18, 1983.

Total-Pressure Vapor-Liquid Equilibrium Data for Binary Systems of Dichloromethane with Pentane, Acetone, Ethyl Acetate, Methanol, and Acetonitrile

Jagjit R. Khurma, Oi Muthu, Sarat Munjal, and Buford D. Smith*

Thermodynamics Research Laboratory, Washington University, St. Louis, Missouri 63130

Total-pressure vapor-liquid equilibrium (VLE) data are reported at approximately 298, 348, and 398 K for dichloromethane with pentane, acetone, ethyl acetate, methanol, and acetonitrile. The experimental *PTx* data were reduced to y_i , γ_i , and G^E values by both the Mixon-Gumowski-Carpenter and the Barker methods and the results compared. Six G^E correlations were tested in the Barker data reduction; the five-constant Redlich-Kister equation gave the best results. The Peng-Robinson equation of state was used for all the data reduction calculations.

Introduction

This paper presents total-pressure vapor-liquid equilibrium (VLE) data for five binary systems for dichloromethane with pentane, acetone, ethyl acetate, methanol, and acetonitrile. Data for each binary were measured at approximately 298, 348, and 398 K. The techniques and apparatus used to measure these data have been described previously along with the defining equation for the activity coefficient and the standard states used (1).

Chemicals Used

The sources and the purities of the chemicals used are given in Table I. Activated molecular sieves (either 3A or 4A) were put into the chemical containers as they were received. Just prior to being loaded in the VLE cells, each chemical was poured into a distillation flask and distilled through a Vigreux Table I. Chemicals Used

component	vendor	stated purity, %
ethyl acetate	Burdick and Jackson	99.9
acetone	Burdick and Jackson	99.9+
methanol	Fisher Scientific	99.9
pentane	Burdick and Jackson	99.9
acetonitrile	Burdick and Jackson	99.9+
dichloromethane	Burdick and Jackson	99.9

Table II. Experimental P vs. x_1 , Data for the Pentane (1) + Dichloromethane (2) System

298.19 K				348.17	ĸ		398.16 K			
	P, KPA			Ρ,	КРА		P	, КРА		
X 1	EXPTL	SHOOTH	X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH		
0.0 0.0331 0.0857 0.1510 0.2213 0.3012 0.4097 0.5011 0.5970	58.35 63.98 69.49 74.24 77.46 79.84 81.74 82.46 82.39	58.36 63.95 69.56 74.18 77.49 79.84 81.74 82.45 82.42	0.0 0.0329 0.0854 0.1506 0.2209 0.3009 0.4095 0.5012 0.5975	308.1 325.8 343.2 358.5 369.6 377.9 384.2 385.4 382.6	308.1 325.8 343.3 358.3 369.7 378.1 384.1 385.2 382.9	0.0 0.0329 0.0853 0.1504 0.2207 0.3007 0.4097 0.5016 0.5987	1030.1 1061.4 1097.1 1131.6 1157.1 1176.0 1187.6 1184.2 1169.3	1030.2 1061.4 1097.4 1130.9 1157.3 1176.6 1187.1 1183.7 1169.8		
0.6945 0.7792 0.8185 0.8998 0.9497 1.0000	81.61 79.90 78.73 75.30 72.45 68.41	81.58 79.90 78.73 75.33 72.43 68.41	0.6948 0.7796 0.8189 0.9002 0.9500 1.0000	377.3 368.8 363.4 349.5 338.0 323.9	377.2 368.8 363.5 349.4 338.1 323.9	0.6954 0.7801 0.8194 0.9005 0.9502 1.0000	1147.1 1121.4 1105.9 1066.8 1037.5 1003.3	1147.3 1120.9 1105.9 1067.1 1037.3 1003.3		

column (25-mm o.d. and 470 mm long). The first and last portions of each distillate were discarded. The retained portions were caught in amber bottles and back-flushed with dry nitrogen for transfer to the cell-loading operation. The stated purities of the chemicals were confirmed by gas-liquid chromatography. None of the compounds exhibited any degradation during the

VLE measurements. The cell pressures were stable with re-

Table III. Experimental P vs. x_1 Data for the Dichloromethane (1) + Acetone (2) System

298.19 K				348.16	ĸ	398.15 K		
	P, 1	KPA		Ρ,	КРА		P	, КРА
X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	X1	EXPTL	Smooth
0.0 0.0506 0.0868 0.1543 0.2193 0.3183 0.3971 0.4919 0.5912 0.6924	30.86 31.05 31.20 31.54 32.11 33.33 34.77 37.18 40.42 44.40	30.86 31.04 31.20 31.57 32.09 33.32 34.78 37.19 40.43 44.38	0.0 0.0506 0.0868 0.1543 0.2192 0.3180 0.3969 0.4916 0.5908 0.6921	186.33 187.81 188.88 191.16 194.14 200.56 207.59 218.03 231.96 248.60	186.35 187.78 188.86 191.21 194.16 200.54 207.49 218.17 231.94 248.53	0.0 0.0506 0.0867 0.1542 0.2190 0.3172 0.3965 0.4912 0.5903 0.6916	679.8 684.6 688.4 696.6 707.0 727.1 747.4 777.1 814.8 860.0	679.8 684.6 688.4 696.8 706.9 726.9 747.4 777.2 814.9 859.9
0.7857 0.8378 0.9167 0.9599 1.0000	48.46 50.88 54.54 56.49 58.22	48.48 50.87 54.53 56.50 58.22	0.7854 0.8375 0.9165 0.9599 1.0000	265.79 276.1 292.3 301.0 308.7	265.83 276.1 292.2 301.1 308.7	0.7850 0.8372 0.9163 0.9597 1.0000	906.9 935.1 979.6 1004.8 1028.1	906.9 935.1 979.6 1004.8 1028.1

Table IV. Experimental P vs. x_1 Data for the Dichloromethane (1) + Ethyl Acetate (2) System

298.21 K				348.15	ĸ		398.17 K			
P, KPA				Ρ,	KPA		Р	, КРА		
X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH		
0.0 0.0486 0.0987 0.1539 0.1970 0.3032 0.3956 0.4945	12.674 13.581 14.495 15.705 16.820 20.046 23.614 28.26	12.674 13.580 14.497 15.708 16.809 20.057 23.608 28.27	0.0 0.0485 0.0986 0.1536 0.1967 0.3029 0.3951 0.4939	94.73 99.23 104.13 110.36 115.87 131.61 148.05 168.94	94.73 99.24 104.10 110.37 115.90 131.58 148.00 169.04	0.0 0.0484 0.0983 0.1532 0.1961 0.3023 0.3942 0.4930	393.5 408.7 424.2 443.6 460.5 507.7 555.2 615.2	393.5 408.7 424.2 443.6 460.6 507.6 555.3 615.1		
0.5895 0.6884 0.7801 0.8339 0.9160 0.9594 1.0000	33.47 39.36 45.20 48.66 53.66 56.14 58.28	33.45 39.39 45.19 48.64 53.68 56.13 58.28	0.5890 0.6879 0.7796 0.8336 0.9158 0.9593 1.0000	192.42 219.25 245.66 261.55 285.6 297.8 308.5	192.36 219.23 245.69 261.55 285.6 297.8 308.5	0.5880 0.6869 0.7789 0.8328 0.9154 0.9590 1.0000	680.6 756.7 832.7 880.3 953.9 992.8 1028.4	680.7 756.6 833.0 880.0 954.0 992.8 1028.4		

Journal of Chemical and Engineering Data, Vol. 28, No. 4, 1983 413

Table V. Experimental P vs. x_1 Data for the Dichloromethane (1) + Methanol (2) System

298.18 K				348.15	ĸ	398.21 K			
P, KPA				P,	KPA		P	, KPA	
X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	
0.0	16.999	16.996	0.0,	151.26	151.27	0.0	737.2	737.1	
0.0429	23.214 29.12	23.235 29.08	0.0427	181.44 208.61	181.41 208.61	0.0425	826.3 902.9	826.8 902.5	
0.1439	35.92	35.96	0.1435	238.79	238.87	0.1429	984.0	983.4	
0.3773	54.16	54.20	0.3767	314.0	314.0	0.3762	1168.7	1168.4	
0.4066	55.55 57.66	55.47 57.71	0.4063	319.3 328.5	319.3 328.6	0.4063	1180.5	1180.4 1200.6	
0.5658	59.83	59.84	0.5655	337.7	337.6	0.5656	1219.0	1218.2	
0.7593	62.01	62.06	0.7593	343.4	343.4	0.7601	1223.0	1212.0	
0.8082	62.34	62.32	0.8084	345.6	345.6	0.8139	1194.9	1194.7	
0.9470	61.91	61.92	0.9472	330.9	330.9	0.9476	1099.4	1099.6	
1.0000	58.19	58.19	1.0000	308.3	308.3	1.0000	1030.2	1030.1	

Table VI. Experimental P vs. x_1 Data for the Dichloromethane (1) + Acetonitrile (2) System

298.23 K				348.15	ĸ	398.13 K			
	P, 1	(PA		Ρ,	KPA		Р	, KPA	
X 1	EXPTL	SMOOTH	X1	EXPTL	ŚМОО ТН	X 1	EXPTL	SMOOTH	
0.0 0.0440 0.0901 0.1498 0.2090 0.2967 0.3900 0.4923 0.5911 0.6664 0.7741 0.8327 0.9191 0.9593	11.880 14.357 16.823 19.865 22.716 26.781 31.03 35.65 40.06 43.38 48.12 50.73 54.61 56.43	11.881 14.354 16.827 19.864 22.718 26.776 31.04 35.66 40.05 43.38 48.13 50.73 54.60 56.43	0.0 0.0439 0.1495 0.2086 0.2962 0.3895 0.4918 0.5906 0.6660 0.7737 0.8324 0.9189 0.9592	82.10 94.80 107.25 122.53 137.07 157.83 178.79 201.06 222.26 238.01 260.33 272.58 290.7 299.3	82.11 94.75 107.26 122.56 137.11 157.73 178.79 201.15 222.20 237.99 260.35 272.57 290.7 299.3	0.0 0.0437 0.1490 0.2080 0.2955 0.3887 0.4909 0.5898 0.6653 0.7731 0.8319 0.9186 0.9591	336.6 375.4 413.8 460.6 505.4 569.8 634.3 702.6 765.9 814.0 882.3 918.9 973.3 998.8	336.6 375.4 413.7 460.6 505.5 569.6 634.6 702.4 766.0 814.0 882.1 919.0 973.3 998.8	

Figure 1. Deviation from Raoult's law for the pentane (1) + dichloromethane (2) system. The $\times 10^1$ multiplier means that the decimal point in the ordinate scale values must be moved one place to the right.

spect to time, and all liquids were perfectly clear when removed from the cells at the end of the last isotherm.

Figure 2. Deviation from Raoult's law for the system dichloromethane (1) + acetone (2). The $\times 10^1$ notation is explained in Figure 1.

Experimental Data

Tables II-VI present the experimental *PTx* data. The "smooth" pressure values reported are from the least-squares

Table VII. Calculated Data for the Pentane (1) + Dichloromethane (2) System at 298.19 K

LIQUID	MOLAR VOLU	JMES, ML/P	IOL: CUI	TONENI	1 = 110.19	COMPOR	5A1 2 -	04.49
	P, 1	(PA	FUG/ COE FF I	CITY		ACTI COEFFI	VITY CIENTS	GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.150 0.250 0.300 0.350 0.450 0.550 0.650 0.650 0.700 0.750 0.800 0.850 0.950	58.358 66.079 70.722 74.123 76.636 78.664 79.809 80.845 81.621 82.151 82.449 82.530 82.449 82.530 82.440 82.558 80.603 79.314 77.576 75.322 72.414	58.358 66.077 70.720 74.122 76.636 78.464 81.621 82.151 82.451 82.410 82.551 82.410 82.551 82.410 82.551 82.410 82.551 82.56 80.604 77.577 75.323	0.9771 0.9737 0.9703 0.9692 0.9684 0.9674 0.9678 0.9666 0.9666 0.9666 0.9666 0.9666 0.9666 0.9667 0.9669 0.9667 0.9664 0.9677 0.9684 0.9674	0.9841 0.9820 0.9799 0.9793 0.9785 0.9785 0.9785 0.9780 0.9779 0.9779 0.9779 0.9779 0.9779 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9778 0.9781 0.9788 0.9780 0.9781 0.9788 0.9780 0.9781 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9779 0.9778 0.97880 0.97880 0.97880 0.97880 0.97880 0.97880000000000000000000000000000000000	0.0 0.1539 0.2389 0.3008 0.3481 0.3855 0.4169 0.4458 0.4458 0.4730 0.5485 0.5792 0.6091 0.6409 0.6772 0.7195 0.7695 0.8291 0.9019	3.7830 2.9788 2.4688 2.4682 1.9435 1.7611 1.4971 1.4027 1.2528 1.1954 1.1555 1.1174 1.0579 1.0375 1.0375 1.0222	1.0000 1.0061 1.0210 1.0329 1.0643 1.0951 1.1321 1.1735 1.2202 1.2743 1.3385 1.2202 1.2743 1.3385 1.2055 1.6609 1.7727 1.8957 2.0327 2.1969 2.4278	0.0 149.59 270.46 370.30 453.04 519.74 571.01 607.91 631.59 642.54 640.79 626.15 600.81 555.10 517.95 459.48 390.07 310.10 219.55 116.98
1.000	68.412	08.412	0.9720	0.9825	1.0000	1.0000	2.7514	0.0

Table VIII. Calculated Data for the Pentane (1) + Dichloromethane (2) System at 348.17 K

LIQUÍD	MOLAR VOL	UMES, ML/M	IOL: CON	1PONENT	1 = 127.12	COMPON	ENT 2 =	69.32
	Ρ,	КРА	FUGACITY COEFFICIENTS			ACTI COEFFI	GE	
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.300 0.350 0.450 0.450 0.550 0.600 0.650 0.600 0.750 0.850 0.850 0.850 0.850	308.143 332.517 347.089 358.181 366.750 373.217 378.007 381.485 383.789 384.993 385.174 384.406 384.993 385.174 384.406 382.765 380.278 376.800 372.152 366.156 358.631 344.398	308.143 332.508 347.083 358.178 366.749 373.219 378.029 381.487 385.792 385.177 384.495 385.177 384.765 380.277 376.799 372.151 366.155 358.631	0.9210 0.9141 0.9099 0.9067 0.9022 0.9022 0.9023 0.8998 0.8991 0.8988 0.8985 0.8988 0.8985 0.8988 0.8985 0.8988 0.8993 0.9011 0.9012 0.9026 0.9026 0.9045	0.9441 0.9397 0.9353 0.9338 0.9328 0.9328 0.9320 0.9315 0.9312 0.9312 0.9312 0.9312 0.9326 0.9326 0.9325 0.9355 0.9355 0.9355	0.0 0.1099 0.1791 0.2362 0.2846 0.3263 0.3636 0.3984 0.4313 0.4627 0.4951 0.5312 0.5690 0.6071 0.6465 0.6889 0.7356 0.7880 0.8474	2.8372 2.2568 1.9100 1.7257 1.5918 1.4824 1.33171 1.2540 1.1549 1.1242 1.0997 1.0561 1.0389 1.0251 1.0147 1.0071	1.0000 1.0058 1.0189 1.0513 1.0513 1.0732 1.1287 1.1624 1.2015 1.2801 1.3190 1.4222 1.4853 1.5550 1.6318 1.7200	0.0 133.68 236.03 318.04 385.01 438.33 478.66 506.80 523.44 528.77 523.04 508.15 485.61 455.31 416.56 369.14 313.10 248.57 175.54
0.950 1.000	338.131 323.905	338.130 323.905	0.9098	0.9419	1.0000	1.0000	1.9810	0.0

Table IX.	Calcul	ated]	Data f	or the	Pentan	e (1) +
Dichlorom	ethane	(2) S	vstem	at 39	8.16 K	

LIQUID MOLAR VOLUMES, ML/MOL: COMPONENT 1 = 143.44 COMPONENT 2 = 75.79

	Ρ,	КРА	FUG. COEFF	ACITY ICIENTS	ACTIVITY COEFFICIENTS			GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.150 0.200 0.250 0.350 0.400 0.450 0.550 0.550 0.600 0.650 0.700 0.700 0.800	1030.157 1074.599 1105.773 1130.746 1150.558 1165.653 1176.476 1183.438 1186.825 1186.885 1183.8685 1183.8685 1178.023 1169.602 1158.852 1146.024 1131.147	1030.157 1074.599 1105.774 1130.751 1150.5662 1176.485 1183.454 1186.840 1186.905 1183.890 1178.047 1169.626 1158.880 1146.050 1131.177	0.8224 0.8137 0.8075 0.7984 0.7952 0.7988 0.7912 0.7991 0.7898 0.7905 0.7916 0.7931 0.7950 0.7974 0.7974	0.8711 0.8657 0.8619 0.8540 0.8541 0.8535 0.8534 0.8535 0.8534 0.8535 0.8554 0.8556 0.85571 0.85871 0.85861 0.85861 0.85861 0.85856 0.85871 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85877 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.85770 0.857700 0.857700 0.857700 0.857700 0.85770000000000000000000000000000000000	0.0 0.0795 0.1421 0.2473 0.2920 0.3328 0.3710 0.4073 0.4438 0.5230 0.5660 0.6109 0.6574 0.7046 0.7535	1.9300 1.6871 1.5371 1.4471 1.3733 1.3079 1.2496 1.1979 1.1525 1.1156 1.0887 1.0692 1.0548 1.0438 1.0345 1.0251 1.0163	1.0000 1.0034 1.0106 1.0193 1.0307 1.0453 1.0636 1.0654 1.1109 1.1378 1.1631 1.1865 1.2083 1.2295 1.2257 1.2283 1.2257	0.0 97.11 173.78 237.25 289.97 332.27 364.15 385.64 396.81 398.03 390.73 376.49 356.53 331.69 302.37 268.08 227 80
0.850 0.900 0.950	1092.585 1067.377 1037.447	1092.605 1067.395 1037.458	0.8038 0.8081 0.8133	0.8696 0.8735 0.8781	0.8058 0.8632 0.9276	1.0089 1.0036 1.0008	1.3687 1.4203 1.4691	180.82 126.81 66.13
1.000	1003.281	1003.281	U.8193	0.8833	1.0000	1.0000	1.5133	0.0

cubic splined fits used to provide the evenly spaced values required by the finite-difference Mixon–Gumowski–Carpenter method (2) for the reduction of PTx data.

Figures 1–5 show the experimental data in terms of the pressure deviation $P_{\rm D}$ from Raoult's law

$$P_{\rm D} = P - [P_2' + x_1(P_1' - P_2')]$$

where P is the experimental mixture pressure and the P_i' values are the pure-component vapor pressures.

Table X.Calculated Data for the Dichloromethane (1) +Acetone (2) System at 298.19 K

LIQUID	MOLAR VOL	JMES, ML/1	10L: CO	MPONENT	1 = 64.49	COMPON	ENT 2 =	74.04
	P, 1	KPA	FUGACITY COEFFICIENTS			ACTI COEFFI	GE	
X1	EKPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.300 0.450 0.450 0.450 0.450 0.550 0.650 0.750	30.864 31.042 31.259 31.541 31.917 32.411 33.047 33.849 36.034 37.426 39.002 40.748 42.651 44.699 46.870	30.864 31.042 31.258 31.540 31.916 32.411 33.047 33.848 34.838 36.034 37.426 39.002 40.748 42.651 44.699 46.870	0.9918 0.9917 0.9916 0.9917 0.9916 0.9913 0.9911 0.9909 0.9906 0.9902 0.9898 0.9884 0.9889 0.9884 0.9888 0.98878	0.9885 0.9884 0.9884 0.9883 0.9881 0.9887 0.9875 0.9875 0.9877 0.9867 0.9867 0.9856 0.9850 0.9856 0.9850 0.9844 0.9836	0.0 0.0557 0.1132 0.1736 0.2371 0.3035 0.3721 0.4418 0.5116 0.5798 0.6443 0.7581 0.8065 0.8493 0.8865	0.5915 0.5994 0.6130 0.6321 0.6553 0.6813 0.7095 0.7394 0.708 0.8029 0.8327 0.8625 0.8890 0.9133 0.93549	1.0000 0.9996 0.9977 0.9733 0.9757 0.9740 0.9597 0.9407 0.9175 0.8004 0.8024 0.8024 0.8287 0.7954 0.7954 0.7237 0.6853	0.0 -64.34 -126.41 -184.77 -238.19 -285.77 -326.77 -360.50 -386.31 -403.55 -411.91 -411.38 -402.01 -383.76 -356.54 -326.11
0.800 0.850 0.900 0.950 1.000	49.130 51.440 53.761 56.050 58.218	49.130 51.440 53.761 56.050 58.218	0.9866 0.9860 0.9853 0.9847 0.9841	0.9821 0.9812 0.9804 0.9796 0.9788	0.9182 0.9449 0.9671 0.9853 1.0000	0.9713 0.9843 0.9936 0.9991 1.0000	0.6462 0.6070 0.5680 0.5304 0.5259	-274.31 -219.10 -154.52 -80.64 0.0

Figure 3. Deviation from Raoutt's law for the system dichloromethane (1) + ethyl acetate (2). The $\times 10^1$ notation is explained in Figure 1.

The point symbols in Figures 1–5 denote the experimental data points and they are positioned exactly. The curves are drawn by the plotting software and are not an exact representation of the splined fits. For an actual comparison of the splined-fit values and the experimental P values, see Tables II–VI.

Dichloromethane shows positive deviations from Raoult's law at all temperatures with pentane, methanol, and acetonitrile. It shows negative deviations at all temperatures with acetone and ethyl acetate. Azeotropes are formed at all three temperatures in the pentane and methanol systems. No azeotropes appear in the other three systems.

Reduced Data

The y_i , γ_i , and G^{E} values obtained with the Mixon et al. data

Table XI.Calculated Data for the Dichloromethane (1) +Acetone (2) System at 348.16 K

LIQUID	MOLAR VOL	.UMES, ML/M	IOL: CON	1PONENT	1 = 69.32	COMPON	ENT 2 🗖	79.88
	Ρ,	KPA	FUG/ COEFFI	CITY		ACTI COEFFI	VITY CIENTS	GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.450 0.450 0.450 0.450 0.550 0.650 0.650 0.650 0.700 0.750 0.850 0.850 0.850	186.348 187.765 189.281 191.041 193.195 203.153 207.805 213.169 219.230 223.339 241.336 259.069 268.663 278.606 288.796	186.348 187.764 189.277 191.038 193.190 195.880 199.187 203.149 207.801 213.166 219.227 225.960 241.334 249.927 259.067 268.662 278.606 288.796	0.9671 0.9668 0.9660 0.9655 0.9649 0.9642 0.9642 0.9642 0.9642 0.9642 0.9655 0.9665 0.9655 0.9655 0.95591 0.9557 0.9552 0.9554 0.95530 0.95512 0.9444 0.9476	0,9545 0,9533 0,9522 0,9522 0,9515 0,9506 0,9483 0,9469 0,9454 0,9454 0,9454 0,9439 0,9399 0,9378 0,9353 0,9333 0,9310	0.0 0.0569 0.1141 0.1730 0.2340 0.2340 0.3617 0.4263 0.4902 0.5526 0.6124 0.6691 0.7713 0.8164 0.8574 0.8574 0.9264	0.7088 0.7107 0.7184 0.7508 0.7508 0.7732 0.7966 0.8200 0.8431 0.8655 0.9064 0.9064 0.9245 0.9664 0.9562 0.9696 0.9809 0.9869	1.0000 0.9999 0.9989 0.9962 0.9982 0.9982 0.9713 0.9578 0.9420 0.9239 0.8822 0.8589 0.8882 0.8067 0.7776 0.7776 0.7475 0.6827	0.0 -49.72 -98.47 -144.77 -187.28 -224.77 -256.48 -282.10 -301.40 -314.18 -320.30 -319.74 -312.77 -298.40 -277.36 -249.12 -249.12 -213.47 -213.47
1.000	308.741	308.741	0.945)	0.9286	1.0000	1.0000	0.6879	0.0

Figure 4. Deviation from Raoult's law for the system dichloromethane (1) + methanol (2). The $\times 10^{1}$ notation is explained in Figure 1.

reduction method are given in Tables VII-XXI, which have been abbreviated from the 41 points actually used in the Mixon et al. data reduction method. The Peng-Robinson equation of state (3) was used to estimate the vapor-phase fugacity coefficients. The pure-compound parameters used for the Peng-Robinson equation are listed in Table XXII.

The "experimental" pressure values in Tables VII–XXI are from the splined fits of the experimental P vs. x_1 values. The "calculated" pressure values are from the Mixon et al. data reduction method. That method can usually be made to reproduce the input P values to any desired precision. In turn as shown by Tables II–VI—the splined fits can reproduce smooth data very closely. Hence, the Mixon et al. method has the capability of fitting the experimental pressure data very closely.

The closeness with which the Barker (4) method reproduces

Table XII.	Calculated Data for the	ne
Dichlorome	thane (1) + Acetone ((2) System at 398.15 K

LIQUID	MOLAR VO	LUMES, MI/	MOL: CO	PONENT	1 = 75.79	COMPON	TENT 2 =	87.70
	Ρ,	КРА	FUG. COEFF	ACITY ICIENTS		ACTI COEFFI	ACTIVITY COEFFICIENTS	
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.300 0.450 0.400 0.450 0.550 0.600 0.650 0.750 0.800 0.850 0.800 0.950	679.848 684.512 689.856 696.173 712.643 773.002 734.884 748.369 763.518 788.785 818.872 840.576 853.880 863.880 885.880 885.814 914.877 942.147 970.301 999.099	679.848 684.524 689.875 696.194 703.750 712.666 734.909 748.394 763.546 778.354 778.820 883.921 883.910 8840.616 883.921 888.756 914.917 888.756 914.917 910.330 999.116	0.9172 0.9164 0.9155 0.9144 0.9132 0.9104 0.9069 0.9049 0.9029 0.8976 0.8948 0.8919 0.8887 0.8855 0.8820 0.8785 0.8785	0.8870 0.8863 0.8854 0.8833 0.8833 0.8785 0.8741 0.8741 0.8746 0.8687 0.86587 0.86587 0.85511 0.8511 0.8470 0.8427 0.8382	0.0 0.0559 0.1126 0.2298 0.2298 0.2298 0.2897 0.3499 0.4100 0.4694 0.5277 0.5844 0.6390 0.6912 0.7875 0.8311 0.8714 0.9084 0.9084 0.9724	0.7799 0.7884 0.7998 0.8305 0.8469 0.8631 0.8791 0.9292 0.9375 0.9498 0.9610 0.9712 0.9876 0.9876 0.9873 0.9933 0.9973 0.9973	1.0000 0.9997 0.9985 0.9959 0.9917 0.9861 0.9704 0.9602 0.9740 0.9351 0.9204 0.9043 0.8867 0.8867 0.8865 0.8250 0.8250 0.8229 0.7809 0.7599	0.0 -40.29 -78.41 -113.53 -144.93 -175.28 -213.91 -227.97 -237.25 -241.16 -241.11 -235.55 -244.11 -238.86 -187.39 -160.39 -127.85 -89.96 -46.95

Figure 5. Deviation from Raoult's law for the system dichloromethane (1) + acetonitrile (2). The $\times 10^{1}$ notation is explained in Figure 1.

the experimental P vs. x_1 values depends upon the G^{E} correlation used. Table XXIII summarizes the results obtained with six G^{E} equations for the dichloromethane + methanol system. Experience has shown that accuracy of the pressure fits increases, in general, with the number of constants in the G^{E} correlation. The Van Laar, Wilson, and UNIQUAC equations have two constants. The NRTL was used as a three-constant equation. The modified Margules (5) and Redlich-Kister equations have five constants. The five-constant Redlich-Kister equation usually will give the best results or be a close second insofar as the pressure fits are concerned. Also, it usually gives ${\gamma_I}^{\sim}$ values which agree well with the Mixon et al. results. The five-constant Margules has the second-best record on the pressure fits but for this system It has trouble with the ${\gamma_2}^{\infty}$ value. As usual, the various methods tend to agree much better on the γ_1^{∞} values than on the γ_2^{∞} values.

Table XIII. Calculated Data for the Dichloromethane (1) + Ethyl Acetate (2) System at 298.21 K

LIQUID	MOLAR VOLU	MES, ML/M	IOL: CON	IPONENT	1 = 64.49	COMPON	ENT 2 ≃	98.43
	P, K	(PA	FUG/ COEFFI	CITY ICIENTS		ACTIVITY COEFFICIENTS		GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.450 0.450 0.450 0.550 0.650 0.650 0.750 0.800 0.850 0.850 0.950	12.674 13.605 14.523 15.615 16.891 18.330 19.946 21.761 23.798 26.067 28.549 31.221 34.057 37.030 40.111 43.268 46.470 49.659 52.736	12.674 13.604 14.522 15.614 16.890 18.329 19.945 21.761 23.797 26.066 28.549 31.221 34.057 37.030 40.110 43.268 40.110 43.268 55.613	0.9970 0.9964 0.9964 0.9956 0.9952 0.9947 0.9942 0.9936 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9820 0.9882 0.9882 0.9885 0.9856	0.9935 0.9931 0.9926 0.9921 0.9908 0.9908 0.9883 0.9883 0.9853 0.9883 0.98837 0.9853 0.9850 0.9837 0.9850 0.9780 0.9751 0.9751 0.9751	0.0 0.1134 0.2134 0.3140 0.4099 0.4974 0.5766 0.6477 0.7108 0.7661 0.8133 0.8530 0.9129 0.9673 0.9787 0.9876 0.9876	0.5681 0.5370 0.5391 0.6015 0.6334 0.6655 0.6987 0.7332 0.7689 0.8040 0.8376 0.8040 0.8376 0.8691 0.9243 0.9475 0.9836 0.9946	1.0000 1.0012 1.0004 0.9927 0.9808 0.9662 0.9263 0.8997 0.8687 0.8343 0.7585 0.7181 0.6764 0.6336 0.5895 0.5895 0.5453 0.5049 0.4753	0.0 -74.22 -152.34 -225.63 -290.50 -346.97 -395.14 -434.65 -464.91 -485.21 -495.10 -494.35 -482.87 -482.87 -482.87 -482.87 -482.87 -482.87 -482.65 -482.74 -483.65 -482.74 -483.75 -493.75 -49
1.000	58.283	58.283	0.9841	0.9726	1.0000	1.0000	0.4802	0.0

Figure 6. Activity coefficients for the pentane (1) + dichloromethane (2) system. Curves are from Barker method, points from Mixon et al. method.

Table XXIV gives a more complete comparison of the pressure fits provided by the two data reduction methods. The Barker results shown there are for the five-constant Redlich-Kister G^{E} correlation.

Figures 6–10 compare the activity coefficients provided by the Mixon et al. and Barker methods. Again, the Barker results are based on the Redlich-Kister equation. The points represent the Mixon et al. results and are accurately positioned, but the curves only approximate the Barker results. The curves are drawn by the plotting software and the fitting routine used there is not sophisticated enough to reproduce the input data exactly when there are sharp bends in the curves.

The difficulty of measuring accurate data for almost ideal systems is illustrated by the right end of the activity coefficient

Table XIV. Calculated Data for the Dichloromethane (1) + Ethyl Acetate (2) System at 348.15 K

LIQUID	MOLAR	VOLUMES,	ML/MOL:	COMPONENT	1	=	69.32	COMPONENT 2 = 105.54	
--------	-------	----------	---------	-----------	---	---	-------	----------------------	--

	P, KPA		FUGA COEFF I	FUGACITY COEFFICIENTS			VITY CIENTS	GE	
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL	
0.0	94.732	94.732	0.9852	0.9683	0.0	0.6331	1.0000	0.0	
0.050	99.378	99.377	0.9840	0.9668	0.0926	0.6252	1.0002	-67.47	
0.100	104.249	104.246	0.9828	0.9652	0.1808	0.6390	0.9981	-134.51	
0.150	109.924	109.921	0.9815	0.9634	0.2695	0.6688	0.9916	-195.44	
0.200	116.351	116.348	0.9801	0.9615	0.3548	0.6977	0.9828	-248.62	
0.250	123.393	123.390	0.9786	0.9594	0.4341	0.7230	0.9727	-294.84	
0.300	131.110	131.106	0.9770	0.9571	0.5079	0.7477	0.9604	-334.46	
0.350	139.600	139.596	0.9752	0.9546	0.5764	0.7729	0.9451	-367.21	
0.400	148.963	148.960	0.9734	0.9518	0.6397	0.7992	0.9263	-392.54	
0,450	159.261	159.258	0.9714	0.9488	0.6976	0.8263	0.9037	-409.76	
0.500	170.450	170.448	0.9693	0.9456	0.7494	0.8530	0.8780	-418.36	
0.550	182.464	182.462	0.9670	0.9421	0.7953	0.8786	0.8498	-418.07	
0.600	195.235	195.233	0.9646	0.9384	0.8353	0.9026	0.8193	-408.68	
0.650	208.678	208.677	0.9622	0.9345	0.8699	0.9248	0,7868	-390.00	
0.700	222.657	222.656	0.9596	0.9305	0.8995	0.9446	0.7529	-361.93	
0.750	237.034	237.033	0.9570	0.9263	0.9246	0.9618	0.7180	-324.39	
0.800	251.668	251.667	0.9543	0.9221	0.9458	0.9761	0.6822	-277.35	
0.850	266.391	266.390	0.9516	0.9178	0.9634	0.9875	0.6459	-220.74	
0.900	280.994	280.994	0.9490	0.9135	0.9781	0.9956	0.6099	-154.63	
0.950	295.237	295.237	0.9464	0.9094	0.9901	1.0001	0.5765	-79.40	
1.000	308.539	308.539	0.9440	0.9055	1.0000	1.0000	0.6058	0.0	

Figure 7. Activity coefficients for the dichloromethane (1) + acetone (2) system. Curves are from Barker method, points from Mixon et al. method.

curve for the dichloromethane (1) + acetonitrile (2) system at 298.23 in Figure 10. The *P* vs. x_1 data plotted smoothly (not shown) and the P_D vs. x_1 plot in Figure 5 appears satisfactory. The P_D/x_1x_2 plot in Figure 11 appears to be good enough although the last point at $x_1 = 0.9593$ appears suspicious. Only the x_1x_2/P_D plot in Figure 12 makes it obvious that trouble will be encountered with the activity coefficients at high x_1 values in the data reduction. The obviously bad point at $x_1 = 0.9593$ in Figure 12 is based on a measured pressure of 56.4267 kPa (423.235 mmHg). A decrease in that measured value of 0.1% would give an x_1x_2/P_D value of 4.275 which falls off the plot in Figure 12. A decrease of only 0.011% (0.047 mmHg) would be sufficient to bring the $x_1 = 0.9593$ point into line with the other points in Figure 12. Hence, uncertainties in the measured

Table XV. Calculated Data for the Dichloromethane (1) + Ethyl Acetate (2) System at 398.17 K

LIQUID	MOLAR VOI	LUMES, ML/M	OL: COMPONENT	1 = 75.79	COMPON	ENT 2 ≖	114.85
	Ρ,	КРА	FUGACITY COEFFICIENT:	3	ACTI COEFFI	GE	
X 1	EXPTL	CALC	-1 2	¥1	1	2	J/MOL
x1 	393.481 409.158 424.731 442.430 462.161 483.479 506.501 531.454 558.565 587.990 619.677 653.540 689.495 727.425	393.481 409.154 424.724 442.420 462.148 483.465 506.489 531.445 558.562 587.992 619.686 653.557 689.517 727.453	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 7 0.0 2 0.0818 9 0.1592 2 0.2376 1 0.3140 3 0.3863 3 0.4549 4 0.5199 2 0.5813 5 0.6388 5 0.6921 1 0.7409 4 0.7852 3 0.8251	1 0.7458 0.7236 0.7283 0.7524 0.7758 0.7956 0.8144 0.8334 0.8529 0.8727 0.8920 0.9104 0.9275 0.9433	1.0000 1.0006 0.9998 0.9951 0.9887 0.9815 0.9728 0.9621 0.9488 0.9328 0.9145 0.8941 0.8718 0.8477	0.0 -51.54 -105.53 -155.09 -198.18 -235.57 -267.68 -294.32 -315.08 -329.45 -337.04 -331.04 -317.10
0.700 0.750 0.800 0.850 0.900	767.154 808.501 851.282 895.311 940.115	767.185 808.533 851.312 895.340 940.138	0.9040 0.837 0.8988 0.830 0.8934 0.822 0.8879 0.813 0.8823 0.805	8 0.8607 1 0.8924 1 0.9204 9 0.9449 5 0.9662	0.9574 0.9698 0.9804 0.9892 0.9958	0.8219 0.7944 0.7651 0.7335 0.7004	-295.65 -266.53 -229.55 -184.35 -130.48
0.950	984.793 1028.408	984.809 1028.408	0.8767 0.797	2 0.9844	0.9994	0.6638	-68.12

Table XVIII. Calculated Data for Dichloromethane (1) + Methanol (2) System at 398.21 K

ĻIQUID	HOLAR VO	LUMES, ML/	MOL: CO	IPONENT	1 = 75.99	COMPON	ENTI2 ≕	48.61
	P,	КРА	FUG. COEFF	ACITY ICIENTS		ACTIVITY COEFFICIENTS		GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.350 0.450 0.450 0.550 0.6550 0.6550 0.6550 0.6550 0.700 0.850 0.800 0.850 0.900	737.122 840.954 923.961 992.345 1048.157 1093.014 1128.534 1178.021 1194.747 1207.200 1226.044 1224.187 1222.4187 1222.017 1224.2017 1224.2017 1224.955 1177.781 1144.756	737.122 840.949 923.952 992.333 1048.147 1093.008 1128.531 1178.025 1194.755 1207.213 1216.057 1221.865 1224.201 1222.031 1214.300 1199.965 1177.788	0.9082 0.8952 0.8848 0.8763 0.8658 0.8593 0.8559 0.8551 0.8510 0.8495 0.8473 0.8476 0.8476 0.8473 0.8476 0.8475 0.8502 0.8502 0.8529	0.9207 0.9097 0.8937 0.8878 0.8830 0.8793 0.8741 0.8724 0.8712 0.8702 0.8696 0.8694 0.8694 0.8694 0.8722 0.8706 0.8726 0.8726	0.0 0.1534 0.2560 0.3316 0.3896 0.4353 0.4724 0.5034 0.5304 0.5548 0.5776 0.6002 0.6251 0.6507 0.6744 0.7043 0.7401 0.7824 0.8352	2.9042 2.5847 2.3380 2.1440 1.9769 1.8291 1.6977 1.5815 1.4799 1.3916 1.0711 1.0726 1.	1.0000 1.0030 1.0111 1.0244 1.0652 1.1338 1.1799 1.2348 1.3755 1.4569 1.5541 1.8296 1.9905 2.1874	0.0 166.51 313.94 444.46 558.74 801.47 847.77 876.43 887.29 880.19 855.75 815.23 755.42 676.29 579.06 463.51 328.53
0.950 1.000	1096.880 1030.144	1096.879	0.8629	0.8834 0.8906	0.9047	1.0029	2.7062 3.0283	173.91 0.0

Table XVI. Calculated Data for Dichloromethane (1) + Methanol (2) System at 298.18 K

LIQU	ID MOLAR VOL	UMES, ML/M	OL: CO	PONENT	1 = 64.49	COMPON	ENT 2 =	40.81	
	P, 1	КРА	FUG/ COEFF	FUGACITY COEFFICIENTS			ACTIVITY COEFFICIENTS		
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL	
0.0 0.05 0.10 0.25 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.55 0.60 0.70	16,996 0 24,218 0 36,642,218 0 36,648 0 41,853 0 46,264 0 49,901 0 55,200 0 57,036 0 58,453 0 60,404 0 61,082 0 61,604 4 1088	16.996 24.219 30.743 36.649 41.854 46.265 49.902 52.851 55.200 57.036 58.453 59.545 60.404 61.081 61.604	0.9954 0.9934 0.9916 0.9900 0.9886 0.9886 0.9856 0.9849 0.9849 0.9844 0.9841 0.9838 0.9833 0.9832 0.9832	0.9957 0.9939 0.9922 0.9884 0.9883 0.9874 0.9860 0.9856 0.9856 0.9852 0.9845 0.9845 0.9845	0.0 0.3311 0.4979 0.5989 0.6653 0.7110 0.7436 0.7678 0.7862 0.8004 0.8118 0.8211 0.8292 0.8365 0.8433 0.8433 0.8433	2.9379 2.7844 2.6525 2.5311 2.4046 2.2692 2.1309 1.9955 1.8660 1.7441 1.6308 1.5270 1.4336 1.43497 1.2741 1.2060	1.0000 1.0014 1.0053 1.0121 1.0232 1.0407 1.1003 1.1456 1.2044 1.2800 1.3766 1.4596 1.6586 1.6586 1.8703 2.1627	0.0 130.16 253.62 370.66 480.60 582.07 673.49 753.47 820.77 874.12 912.24 933.83 937.63 922.28 886.00 826 30	
0.80	0 62.286 0 62.457 0 62.487 0 61.820	62.286 62.457 62.487 61.820	0.9830 0.9830 0.9830 0.9831	0.9842 0.9842 0.9842 0.9844	0.8571 0.8663 0.8802 0.9049	1.1454 1.0925 1.0488 1.0108	2.5855 3.2346 4.3498 6.8338	740.25 622.97 470.86 263.57	
1.00	0 58.191	58.191	0.9841	0.9853	1.0000	1.0000	10.3221	0.0	

Table XIX. Calculated Data for Dichloromethane (1) + Acetonitrile (2) System at 298.23 K

LIQUID	MOLAR VOL	JMES, ML/I	MOL: CO	HPONENT	1 = 64.50	COMPON	ENT 2 =	52.36
	P, 1	KIPA	FUG. COEFF	ACITY ICIENTS		ACTIVITY COEFFICIENTS		GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0	11.881	11.881	0.9970	0.9947	0.0	1.2018	1.0000	0.0
0.050	14.680	14.680	0.9962	0.9935	0.2297	1.1733	1.0006	21.27
0.100	17.342	17.341	0.9954	0.9924	0.3803	1.1464	1.0025	39.46
0.150	19.874	19.873	0.9947	0.9913	0.4871	1.1210	1.0057	54.51
0.200	22.293	22.292	0.9940	0.9903	0.5672	1.0974	1.0103	66.35
0.250	24.632	24.631	0.9934	0.9893	0.6305	1.0774	1.0157	75.09
0.300	26.929	26.929	0.9927	0.9883	0.6825	1.0618	1.0213	81.09
0.350	29.215	29.215	0.9921	0.9874	0.7265	1.0504	1.0265	84.87
0.400	31.492	31.491	0.9914	0.9865	0.7644	1.0416	1.0317	86.86
0.450	33.755	33.755	0.9908	0.9855	0.7973	1.0344	1.0370	87.28
0.500	36.002	36.002	0.9902	0.9846	0.8261	1.0281	1.0427	86.25
0.550	38.231	38.231	0.9896	0.9837	0.8515	1.0224	1.0492	83.77
0.600	40.446	40.446	0.9890	0.9828	0.8743	1.0173	1.0563	79.84
0.650	42.653	42.653	0.9884	0.9819	0.8948	1.0129	1.0640	74.45
0.700	44.856	44.856	0.9878	0.9810	0.9135	1.0091	1.0722	67.64
0.750	47.061	47.061	0.9872	0.9800	0.9307	1.0060	1.0809	59.42
0.800	49.274	49.274	0.9866	0.9791	0.9466	1.0037	1.0897	49.85
0.850	51.498	51.498	0.9860	0.9782	0.9613	1.0020	1.0983	39.03
0.900	53.742	53.742	0.9853	0.9773	0.9751	1.0010	1.1054	27.11
0.950	56.006	56.006	0.9847	0.9764	0.9880	1.0007	1.1092	14.44
1.000	58.247	58.247	0.9841	0.9755	1.0000	1.0000	1.1596	0.0

Table XVII. Calculated Data for Dichloromethane (1) + Methanol (2) System at 348.15 K

Table XVII. Calco Methanol (2) Syste	ulated Data for Dich em at 348.15 K	loromethane	(1) +	Table XX.CalculaAcetonitrile (2)Sys	Calculated Data for Dichloromethane (1) + (2) System at 348.15 K			
LIQUID MOLAR VOLUMES, ML	/MOL: COMPONENT 1 = 69.41	COMPONENT 2 =	44.16	LIQUID MOLAR VOLUMES, ML/M	10L: COMPONENT 1 = 69.41	COMPONENT 2 = 55.9		
P, KPA	FUGACITY COEFFICIENTS	ACTIVITY COEFFICIENTS	GE	P, KPA	FUGACITY COEFFICIENTS	ACTIVITY COEFFICIENTS		

	P,	KPA	FUG/ COEFF	ACITY ICIENTS	ACTIVITY COEFFICIENTS			GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.150 0.200 0.350 0.350 0.400 0.400 0.450 0.550 0.550 0.600 0.550 0.750 0.750 0.750 0.800 0.850	151.267 186.206 216.304 241.981 263.643 286.558 308.577 318.214 325.829 331.779 342.875 344.785 345.783 345.783	151.267 186.211 216.309 241.986 263.647 281.698 296.540 308.578 318.215 325.830 331.779 336.417 340.079 342.876 344.785 345.761 344.022	0.9726 0.9662 0.9667 0.9561 0.9522 0.9489 0.9462 0.94409 0.9423 0.94409 0.9398 0.9398 0.9398 0.9375 0.9373 0.9373 0.9373	0.9754 0.9698 0.9649 0.9573 0.9550 0.9550 0.9550 0.9463 0.9443 0.9445 0.9443 0.9444 0.94441 0.94441 0.94441	0.0 0.2219 0.3583 0.4502 0.5160 0.5652 0.6312 0.6322 0.6575 0.6777 0.6949 0.7101 0.7244 0.7384 0.7523 0.7666 0.7845 0.8101	2.9557 2.7515 2.5635 2.2273 2.0773 2.0773 2.0773 2.0773 2.0773 1.8104 1.6929 1.8855 1.4879 1.4002 1.2540 1.2540 1.924 1.371 1.9948 1.0552	1.0000 1.0018 1.0076 1.0179 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0543 1.0555 1.0555	0,0 151.57 292.32 421.72 539.14 643.90 735.25 812.36 874.38 920.37 949.35 960.29 952.25 922.428 874.88 801.72 702.55 576.13 421.25 576.13 421.25 576.13 421.25 576.13 421.25 576.13 421.25 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55 576.13 577.55
0.950	330.113 308.332	330.113 308.332	0.9401	0.9467	0.8978	1.0070	4.3194 5.6729	231.01 0.0

	P, KPA		FUGA COEFFI	CITY CIENTS	ACTIVITY COEFFICIENTS			GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0	82.110	82.110	0.9862	0.9760	0.0	1.2666	1.0000	0.0
0.100	109.904	109.900	0.9833	0.9680	0.3195	1.1900	1.0032	58.67
).150).200	122.695 135.025	122.691 135.020	0.9782 0.9759	0.9644	0.4200 0.4999	1.1609 1.1374	1.0067 1.0111	81.26 100.05
0.250	146.978 158.607	146.973 158.603	0.9736	0.9577	0.5655	1.1175	1.0163	115.42 127.59
.350	169.969	169.964	0.9693	0.9514	0.6679	1.0848	1.0292	136.69 142 84
. 450	192.096	192.093	0.9652	0.9454	0.7458	1.0597	1.0454	146.18
0.550	213.615	213.611	0.9613	0.9423	0.8081	1.0493	1.0652	144.67
0.600 0.650	224.186 234.656	224.182 234.654	0.9593	0.9368	0.8352	1.0316	1.0769	139.83
).700).750	245.060 255.434	245.058 255.432	0.9555 0.9536	0.9313 0.9286	0.8833 0.9050	1.0177 1.0121	1.1045 1.1204	121.78 108.51
0.800	265.812	265.811	0.9517	0.9258	0.9256	1.0077	1.1377	92.37 73.39
0.900	286.721	286.719	0.9480	0.9203	0.9642	1.0019	1.1755	51.63
1.000	308.000	308.000	0.9441	0.9148	1.0000	1.0000	1.2170	0.0

55.91

Table XXI.Calculated Data for Dichloromethane (1) +Acetonitrile (2) System at 398.13 K

LIQUID HOLAR VOLUMES, ML/HOL: COMPONENT 1 = 75.98 COMPONENT 2 = 60.38							60.38		
	Р, КРА		FUGACITY COEFFICIENTS			ACTIVITY COEFFICIENTS		GE	
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL	
0.0 0.050 0.100 0.250 0.200 0.350 0.400 0.450 0.550 0.550 0.550 0.600 0.550 0.600 0.750 0.800 0.850	336.597 380.790 422.060 449.505 536.643 572.800 607.995 642.248 675.632 778.336 740.561 772.509 804.322 804.322 804.013 867.578 899.014	336.597 380.784 422.052 461.360 499.499 536.641 572.801 607.999 642.256 675.644 708.350 740.576 772.526 804.338 836.031 867.594 899.030 930.331	0.9609 0.9548 0.9491 0.9388 0.9387 0.9338 0.9291 0.9245 0.9201 0.9158 0.9158 0.9034 0.8054 0.8954 0.88954 0.8814 0.8814 0.8814	0.9324 0.9237 0.9157 0.9081 0.8940 0.8873 0.8888 0.8745 0.8684 0.8684 0.8684 0.8625 0.8568 0.8568 0.8454 0.8454 0.8454 0.8459 0.84235	0.0 0.1508 0.2654 0.3573 0.4340 0.5561 0.6058 0.6499 0.6896 0.7258 0.7594 0.7908 0.8206 0.8488 0.8759 0.9018 0.9270	1.2932 1.2457 1.2065 1.1508 1.1528 1.1333 1.1157 1.0994 1.0841 1.0698 1.0568 1.0453 1.0273 1.0204 1.0204 1.0095	1.0000 1.0009 1.0035 1.0071 1.0114 1.0224 1.0384 1.0487 1.0384 1.0487 1.0603 1.0732 1.0870 1.1015 1.1171 1.1342 1.1560	0.0 39.34 72.58 100.53 124.12 163.93 160.17 172.82 181.82 187.04 188.61 185.94 179.73 169.93 156.67 139.96 119.73 95.77	
0.900 0.950 1.000	961.583 993.038 1024.922	961.592 993.043 1024.922	0.8796 0.8757 0.8717	0.8182 0.8128 0.8075	0.9515 0.9758 1.0000	1.0023 1.0005 1.0000	1.2020 1.2293 1.2493	67.78 35.65 0.0	

Table XXII. Parameters for Peng-Robinson Equation^a

component	<i>T</i> _c , K	P _c , MPa	ω
dichloromethane	510.15	6.080	0.1990
pentane	469.50	3.374	0.2067
acetone	508.10	4.700	0.3040
ethyl acetate	523.30	3.830	0.2030
methanol	512.64	8.092	0.5560
acetonitrile	545.50	4.830	0.3270

^a Binary interaction constant was set at 0.0 for all systems.

Figure 8. Activity coefficients for the dichloromethane (1) + ethyl acetate (2) system. Curves are from Barker method, points from Mixon et al. method.

Figure 9. Activity coefficients for the dichloromethane (1) + methanol (2) system. Curves are from Barker method, points from Mixon et al. method.

Figure 10. Activity coefficients for the dichloromethane (1) + acetonitrile (2) system. Curves are from Barker method, points from Mixon et al. method.

Table XXIII. Effect of Calculation Method on γ_i^{*} Values for the Dichloromethane (1) + Methanol (2) System

				calcd γ_i^{∞} values					
				component 1			component 2		
	accuracy of P fits, max % dev/rmsd ^a		298.18	348.15	398.21	298.18	348.15	398.21	
calculation method	298.18 K	348.15 K	398.21 K	К	К	K	K	K	K
Mixon et al.	0.2/0.1	0.0/0.0	0.1/0.0	2.94	2.96	2.90	10.32	5.67	3.03
Barker: absolute Van Laar	0.7/0.4	0.3/0.1	0.1/0.0	2.97	2.93	2.83	9.70	5.40	3.02
Wilson	2.4/1.1	0.6/0.3	0.2/0.1	3.23	3.08	2.91	15.14	6.16	3.12
UNIQUAC	1.2/0.5	0.2/0.1	0.1/0.0	3.07	3.00	2.87	11.46	5.71	3.06
NRTL	0.8/0.4	0.2/0.1	0.1/0.0	3.02	2.98	2.85	10.10	5.54	3.04
modified Margules	0.7/0.3	0.0/0.0	0.1/0.0	2.80	2.95	2.85	20.96	5.88	3.18
Redlich-Kister	0.2/0.1	0.1/0.0	0.1/0.0	2.96	2.96	2.86	11.28	5.70	3.05

^a % dev = 100[$|P_{calcd} - P_{exptl}|/P_{exptl}$]; rms for % dev = [$\Sigma (\% \text{ dev})^2/n$]^{1/2}.

Table XXIV. Comparison of Barker and Mixon et al. **Pressure Fits**

	max % e	dev in P	rms for	r % dev					
temp, K	Barker	Mixon	Barker	Mixon					
Pentane (1) + Dichloromethane (2)									
298.19	0.219	0.091	0.087	0.041					
348.17	0.170	0.072	0.079	0.038					
398.16	0.211	0.056	0.125	0.033					
Dichloromethane (1) + Acetone (2)									
298.19	0.089	0.082	0.043	0.033					
348.16	0.070	0.062	0.037	0.025					
398.15	0.026	0.025	0.012	0.011					
Dichloromethane $(1) + Ethyl Acetate (2)$									
298.21	0.253	0.066	0.111	0.036					
348.15	0.095	0.063	0.055	0.024					
398.17	0.075	0.034	0.040	0.018					
Dic	hlorometh	ane (1) +]	Methanol (2)					
298.18	0.170	0.156	0.103	⁻ 0.081					
348.15	0.058	0.032	0.026	0.015					
398.21	0.060	0.092	0.027	0.047					
Dich	lorometha	ne (1) + A	cetonitrile	(2)					
298.23	0.073	0.024	0.036	Ó.014					
348.15	0.069	0.061	0.031	0.027					
398.13	0.048	0.042	0.023	0.020					
	DICHLOROMETHANE (1) + ACETONITAILE (2)								
ç		298.23 K							
12.0									
8	+								
10.	1								
	+								
	1			1					

9.00 КРВ

1.00

2.00

8 0.00

0.20

Pn/X1X5. 6.00

Figure 11. $P_{\rm D}/x_1x_2$ plot for dichloromethane (1) + acetonitrile (2).

0,60

0.00

1.00

0.40

pressure values of about 0.01% are sufficient to cause the anomalous points at the right end of the 298.23 K curve in Figure 10.

The scatter shown in the 298.23 K curve in Figure 10 could

Figure 12. x_1x_2/P_D plot for dichlormethane (1) + acetonitrile (2).

have been eliminated in either of two ways in the data reduction. The raw experimental pressure values above $x_1 = 0.7$ could have been adjusted by amounts in the 20-40-µm range to give a smooth x_1x_2/P_D plot, or the splined fits of the raw experimental data points could have been relaxed slightly and allowed to miss the experimental P values by larger amounts.

The sensitivity of the Mixon et al. method to the location of the experimental P values gives that method an advantage over the Barker method in the determination of γ_I^{∞} values for highly nonideal systems which exhibit unusual behavior near the end points but, for a set of almost idea data such as the 298.23 K set in Figure 10, the Barker method is often more reliable.

Registry No. Dichloromethane, 75-09-2; pentane, 109-66-0; acetone, 67-64-1; ethyl acetate, 141-78-6; methanol, 67-56-1; acetonltrile, 75-05-8.

Literature Cited

- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.
 Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fun-dam. 1965, 4, 455. (2) (3) Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 4,
- 455
- (4) Barker, J. A. Aust. J. Chem. 1953, 6, 207.
 (5) Abbot, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62.
- Received for review December 14, 1982. Accepted May 5, 1983. We gratefully acknowledge the financial support received from the National Sci-ence Foundation Grant CPE80-000534 and from the Industrial Participants in the Thermodynamics Research Laboratory.